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Abstract
Explicit solutions of the non-constant semi-dynamical reflection equation are
constructed, together with suitable parametrizations of their structure matrices.
Considering the semi-dynamical reflection equation with rational non-constant
Arutyunov–Chekhov–Frolov structure matrices, and a specific meromorphic
ansatz, it is found that only two sets of the previously found constant solutions
are extendible to the non-constant case. In order to simplify future constructions
of spin-chain Hamiltonians, a parametrization procedure is applied explicitly
to all elements of the semi-dynamical reflection equation available. Interesting
expressions for ‘twists’ and R-matrices entering the parametrization procedure
are found. In particular, some expressions for the R-matrices seem to appear
here for the first time. In addition, a new set of consistent structure matrices
for the semi-dynamical reflection equation is obtained.

PACS numbers: 02.20.Uw, 02.30.Ik, 75.10.Pq
Mathematics Subject Classification: 08.A, 47N50, 47L90

1. Introduction

Dynamical extensions of Sklyanin-type quantum reflection algebras [1–3] have been
introduced and quite extensively studied in recent years [4, 5]. The so-called semi-dynamical
reflection algebra, exemplified in [4], was formulated generically in [5] and later used as
a basic algebraic structure to yield formal spin-chain quantum integrable Hamiltonians [6].
Generic consistent parametrizations of its matrices were then proposed in [7], leading to
remarkably simplified factorized formulas for the generating monodromy matrices. Together
with the classification of scalar (non-operatorial) solutions K to the specific semi-dynamical
reflection equation (SDRE), started in [8] for the constant case, this procedure is expected
to lead to new, fully explicit, spin-chain Ruijsenaar–Schneider (RS) type Hamiltonians. The
results presented in this paper represent another step in this direction. Explicit resolutions
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of the parametrization described in [7], together with the subsequent partial classifications of
non-constant scalar K solutions will be given. Indeed, the construction of tractable (i.e. locally
interacting) spin-chain type Hamiltonians, contrary to the pure N-body system Hamiltonians,
requires a priori the consideration of non-constant, spectral parameter-dependent solutions
[1]. In this context, the parametrization proposed in [7] considerably simplifies the form of
the relevant monodromy matrices, and therefore it is a key ingredient to explicitly build the
Hamiltonians.

The SDRE is a quadratic constraint equation for generators of a quantum algebra
G encapsulated into the matrix K. Such a constraint is represented as an equation in
End(U) ⊗ End(U) where U is a given vector space known as the auxiliary space. This
space can be a finite-dimensional space V or a loop space V ⊗ C[u]. The general form of the
SDRE considered in this paper is

A12(u, v; λ)K1(u; λ)B12(v; λ)K2(v; λ + γ h1)

= K2(v; λ)C12(u; λ)K1(u; λ + γ h2)D12(u − v; λ), (1.1)

where A,B,C and D are C-number matrices known as structure matrices. All elements
appearing in (1.1) depend on a set of complex variables, collectively denoted as λ ≡ {λi, i =
1, . . . , n} and known as dynamical variables. If the auxiliary space is a loop space, there is also
a spectral parameter dependence in A,B,C,D,K represented by the complex variables u and
v. Note that the matrix D may have a more general dependence in the spectral parameters, such
as A, but this leads to subsequent difficulties when deriving the commuting Hamiltonians [7].
The dynamical variables {λi} are interpreted as coordinates on the dual h∗ of an n-dimensional
Abelian subalgebra h of a simple Lie algebra g.

Given a basis h ≡ {hi, i = 1, . . . , n} of h∗ (with {hi, i = 1, . . . , n} basis in h), and setting
λ = ∑n

i=1 λih
i , it is possible to define formally

f (λ + γ h) ≡ eγDf (λ) e−γD, D =
n∑

i=1

hi∂λi
, (1.2)

where f (λ) is a differentiable function on h∗ and the auxiliary space U is assumed to be a
diagonalizable irreducible module of h. In order to simplify the notation, it will often be set
f (h) ≡ f (λ + γ h).

The structure matrices are supposed to satisfy the following zero-weight conditions:

[hi ⊗ 11, B12] = 0, [11 ⊗ hi, C12] = 0, [hi ⊗ 11 + 11 ⊗ hi,D12] = 0,

i = 1, . . . , n. (1.3)

Moreover, the assumed associativity of the semi-dynamical reflection algebra G yields, as
sufficient consistency conditions, that the structure matrices obey a set of YB-like equations
[5]. Such equations have been reformulated in [7] to take into account certain freedom
enjoyed by the structure matrices due to the form-invariance of the SDRE (1.1) under
suitable transformations. In fact, multiplying the left-hand side of equation (1.1) by (g ⊗ 11),
where g is an automorphism of the auxiliary space U , leads to an equivalent—though with a
different definition of structure matrices—formulation of the exchange relations satisfied by
the generators of the algebra G, which are encapsulated into the unmodified matrix K. Taking
into account this property, the YB-like consistency equations can be written as

a A12A13
ggA23 = A23

ggA13A12
gg,

b A12C13
g1C23 = C23

g2C13A12(h3)
gg,

c D12B13B23(h1)
g3 = B23B13(h2)

g3D12,

d D12(h3)D13D23(h1) = D23D13(h2)D12,

(1.4)
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where

M12
gg ≡ g1g2M12g

−1
1 g−1

2 , M12
g1 ≡ g1M12g

−1
1 , M12

g2 ≡ g2M12g
−1
2 , (1.5)

and g is the automorphism of the auxiliary space. Note that (1.4-d) is the Gervais–Neveu–
Felder (GNF) equation [9], and it is unmodified by this extension. In addition, for consistency
conditions, B12 = C21.

In this paper, only the sets of matrices A,B,C,D for which there exist scalar invertible
solutions K to (1.1) will be taken into account. At present, only one of these sets is known,
namely the Arutyunov–Chekhov–Frolov (ACF) solution [4], which is associated with the RS
models based on the Lie algebra data gl(n) [10]. In this case, the structure matrices obey
the generalized YB set of equations (1.4) where the automorphism g represents a shift in the
spectral parameter u as g = exp

(−γ d
du

)
. In the limit of non-spectral parameter dependence,

the automorphism reduces to g = 11. For this set of matrices A,B,C,D, the auxiliary space
U is a finite-dimensional loop space V ⊗ C[u] with V = C

n and h is the Cartan subalgebra
of the Lie algebra gl(n). As a consequence, for the matrix K in (1.1), the definition (1.2)
translates into

K2(h1) ≡
n∑

j=1

hj ⊗ K(λj + γ ). (1.6)

Given a basis {ei, i = 1, . . . , n} of V, eij = ei ⊗ej (with ejj ≡ hj ) represents the usual matrix
basis and the rational ACF structure matrices read [4]

A12(u, v; λ) = A∞
12(λ) +

γ

(u − v)
d12 +

γ

v
b12 − γ

(u + γ )
b21, (1.7)

B12(v; λ) = B∞
12 (λ) − γ

(v + γ )
b12, C12(u; λ) = B21(v; λ), (1.8)

D12(u − v; λ) = D∞
12(λ) +

γ

(u − v)
d12, (1.9)

with

A∞
12(λ) = 11 ⊗ 11 +

n∑
i �=j=1

xij (eii − eij ) ⊗ (ejj − eji), (1.10)

B∞
12 (λ) = 11 ⊗ 11 +

n∑
i �=j=1

yij ejj ⊗ (eii − eij ); C∞
12 (λ) = B∞

21 (λ), (1.11)

D∞
12(λ) = 11 ⊗ 11 +

n∑
i �=j=1

xij (eij ⊗ eji − eii ⊗ ejj ), (1.12)

and

d12 =
n∑

i,j=1

eij ⊗ eji, b12 =
n∑

i,j=1

eii ⊗ eji, c12 ≡ b21,

xij = γ

(λi − λj )
≡ γ

λij

, yij = γ

(λi − λj − γ )
≡ γ

(λij − γ )
.

(1.13)

The matrices (1.10)–(1.12) will be denoted as rational ‘constant’ ACF matrices because they
do not depend on the spectral parameter. Similarly, matrices (1.7)–(1.9) will be called non-
constant ACF matrices. They exhibit spectral parameter dependence and reduce to the previous
set (1.10)–(1.12) in the limit u, v, (u − v) −→ ∞.
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The parametrization procedure proposed in [7] makes use of quantum group-like objects
such as R-matrices and Drinfeld’s twists for building the A,B,C,D and K matrices. It allows
us to simplify significantly the expressions for the monodromy matrices found previously [6],
and therefore to facilitate the explicit construction of integrable spin-chain Hamiltonians.

The purpose of the present paper is to provide explicit realizations of the parametrization
procedure proposed in [7] making use of the specific matrices D available in (1.9) and (1.12),
and to classify, at least partially, non-constant solutions K of the SDRE. The first part of the
paper is focused on the search of solutions of equation (1.1) using the structure matrices (1.7)–
(1.9). The final aim is to extend the results obtained in [8] for the rational constant structure
matrices (1.10)–(1.12) to the case with spectral parameter dependence. The second part of the
paper will be devoted to the parametrization procedure for which three distinct situations will
be considered. Making use of the ACF set of structure matrices, the parametrization procedure
will be applied first to the simpler case g = 11 and later to the more complicated situation in
which g = exp

(−γ d
du

)
. Finally, adopting an alternative parametrization for matrices D in

(1.12) and (1.9), which is provided in [11], it will be shown how the parametrization procedure
leads to an alternative set of solutions of equations (1.4), namely to new structure matrices
A,B,C. Full analysis of the SDRE built by these matrices will be left to further studies,
even if some information concerning the solutions of this equation can be deduced making use
of the parametrization procedure. It should be emphasized that the existence of this new set
of structure matrices relies on the availability of distinct de-twisting procedures for a single
D-matrix. In fact, from [7] a set of consistent structure matrices A,B,C,D is provided as
soon as a D-matrix is chosen and a particular cocycle twist-like formulation of D is specified.
Further remarks concerning this point will be added later.

2. Solutions of the non-constant rational SDRE

In this section, making use of the rational ACF set of solutions for the equations (1.4), the
problem of discovering and classifying the matrices K solving the SDRE will be addressed.
In [8], as it was pointed out before, this problem has already been tackled in the case of no
spectral parameter dependence. Four sets of solutions were identified, namely

Ia K∞
ij (λ) = f + λi

f + λj

n∏
a �=j

γ

λja

,

IIa K∞
ij (λ) = (f − �ij )

n∏
a �=j

γ

λja

, �ij =
n∑

a=1

λa − (λi + λj )

Ib K∞
ij (λ) = f + �j

f + �i

n∏
a �=j

γ

λja

, �i =
n∑

a=1

λa − (λi)

IIb K∞
ij (λ) = f

f − λij

n∏
a �=j

(
1 +

f

λja

)
,

(2.1)

where f is a γ -periodic function on each dynamical variable. All other solutions can be
obtained from these sets by multiplying the K-matrix on the right by a diagonal matrix Nii(λ)

satisfying the following flatness condition:

Nii(λ)Njj (λ + γ hi) = Njj (λ)Nii(λ + γ hj ). (2.2)

In particular, the matrix Njj = 0, Nii = 1, i �= j allows us to obtain a matrix K with the entries
Kkj = 0, k = 1, . . . , n. In this case, the periodicity condition on the dynamical variable λj
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for the function f is omitted. It can be noted that for n = 2 solutions (2.1-Ia) and (2.1-IIa)
collapse to (2.1-Ib) and (2.1-IIb), respectively. Moreover, the only invertible matrices are
represented by solutions (2.1-IIb), since matrices (2.1-Ia) and (2.1-Ib) have rank 1 while
matrices (2.1-IIa) have rank 2. Finally, note that in the limit f −→ 0 solutions (2.1-IIb)
reduce to the trivial solution 11.

The classification of the matrices K solving the SDRE will now be extended to the case
with spectral parameter dependence. In order to simplify the notation, the explicit dependence
on the dynamical variables will be omitted in what follows. Because of the particular form of
the structure matrices, and without making any assumption on the unknown matrices K, the
SDRE (1.1) can be rewritten in a more appealing form as(

A12(u, v) − γ

(u − v)
d12

)
K1(u)B12(v)K2(v;h1)

= (K2(v)C12(u)K1(u;h2) − K2(u)C12(v)K1(v;h2))
γ

(u − v)
d12

+ K2(v)C12(u)K1(u;h2)D
∞
12 . (2.3)

The advantage of this formulation is to gather together in a more compact way the terms
proportional to the factor 1/(u − v). Then, the following ansatz for the matrix K will be used

K(u, λ) =
N∑

l=0

(γ

u

)l

k(l)(λ), k(0)(λ) ≡ K∞(λ). (2.4)

This expansion in powers of 1/u represents a natural extension, as rational function, of the
solutions (2.1) to which it reduces in the limit u −→ ∞. Note that in (2.4) the location of the
poles at u = 0 is just a matter of choice. Multiplying such an ansatz by

N∏
l=1

(
u

u − u0

)l

(2.5)

allows us to obtain an equivalent ansatz with the poles shifted at u = u0. Reciprocally, given
any matrix K with a finite set of poles, it can always be brought back to the form (2.4) by a
suitable multiplicative factor like (2.5).

Once (2.4) is plugged into the expression (2.3), it is noted that all terms coming from
the second line, and proportional to 1/(u − v) can be combined together in such a way to
eliminate completely this factor. For instance,

1

(u − v)

[
1

v(u + γ )
− 1

u(v + γ )

]
= γ

uv(u + γ )(v + γ )
. (2.6)

Then, using the property

c12k
(l)
1 b12k

(l)
2 (h1) = k

(l)
2 c12k

(l)
1 (h2)d12, l = 0, 1, . . . , N (2.7)

some simplifications can be performed amongst terms coming from the first and the second
lines of (2.3). The remaining terms must be treated with care. First of all, the powers
of the spectral parameters appearing in each term must be reduced as much as possible by
decomposition in prime elements. Finally, making use of the property

(A∞ − b)12k
(l)
1 b12k

(l)
2 (h1) = 0, l = 0, 1, . . . , N (2.8)

and the reduction explained above, further simplifications are possible. The expression
obtained splits into several relations, each of them gathering algebraically independent terms.
They represents constraints for the elements of the matrices k(l), which must be analyzed
carefully by projecting them onto the matrix elements (eij ⊗ ekl)i, j, k, l = 1, . . . , n.

5
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Starting with the simplest ansatz for the matrices K, namely the expression (2.4) with
l = 1, the expression (2.3) translates into eight relations, namely

A∞
12k

(0)
1 B∞

12 k
(0)
2 (h1) = k

(0)
2 C∞

12k
(0)
1 (h2)D

∞
12 , (2.9)

b12k
(0)
1 (B∞ − b)12k

(1)
2 (h1) = 0, (2.10)

b12k
(1)
1 (B∞ − b)12k

(1)
2 (h1) = 0,

(A∞ − c)12k
(1)
1 B∞

12 k
(1)
2 (h1) − k

(1)
2 (C∞ − c)12k

(1)
1 (h2)D

∞
12

+ k
(0)
2 (C∞ − c)12k

(1)
1 (h2)d12 + (b − d)12k

(1)
1 (B∞ − b)12k

(0)
2 (h1) = 0,

(A∞ − c)12k
(1)
1 B∞

12 k
(0)
2 (h1) − k

(0)
2 (C∞ − c)12k

(1)
1 (h2)D

∞
12 = 0,

(2.11)

a c12(k
(1) − k(0))1B

∞
12 k

(0)
2 (h1) − k

(0)
2 c12(k

(1) − k(0))1(h2)D
∞
12 = 0,

b c12(k
(1) − k(0))1

(
B∞

12 − b
)

12k
(1)
2 (h1) − k

(1)
2 c12(k

(1) − k(0))1(h2)
(
D∞

12 − d
)

12 = 0,

c A∞
12k

(0)
1 B∞

12 k
(1)
2 (h1) − k

(1)
2 C∞

12k
(0)
1 (h2)D

∞
12 + b12k

(0)
1 (B∞ − b)12k

(0)
2 (h1) = 0.

(2.12)

Equation (2.9), which involves only the matrix k(0), has already been investigated and its
solutions have been listed in (2.1) (k(0) ≡ K∞). All other eight relations incorporate both
k(0) and k(1) matrices. When they are analyzed, one discovers that (2.10) represents a strong
constraint for the matrix k(1).

Consider first the case when k(0) has no zero entry, then expression (2.10) states the
following:

k
(1)
ij = k

(1)
kj , i �= k = 1, . . . , n. (2.13)

As a consequence the relations (2.11) become identities and only the three relations (2.12)
remain to be investigated. For instance, (2.12-a) allows us to establish whether the sets of
solutions listed in (2.1) can be extended or not, and to specify the form of the extensions.
Provided k(1) has no zero entry, it turns out that (2.1-Ia) and (2.1)–(IIa) are not extendable
to a first-order solution k(1). In contrast, the solutions (2.1-Ib) and (2.1-IIb) can be uniquely
extended as follows:

Ib Kij (u; λ) = (f + �j)

(
1

f + �i

− 1

u

) ∏
a �=j

(
γ

λja

)
, �i =

n∑
a=1

λa − (λi),

IIb Kij (u; λ) = f

(
1

f − λij

− 1

u

) ∏
a �=j

(
f

λja

+ 1

)
.

(2.14)

The constraints provided by expressions (2.12-b) and (2.12-c) are automatically satisfied by
the sets of solutions (2.14). Note that solution (2.14-IIb) with constant f coincides with the
solution found by ACF in [4]. Moreover, it can be shown that allowing a column in the matrix
k(1) to be zero, constraints (2.12) force all elements of the corresponding column in k(0) to be
identical. However, this can only happen provided these elements are equal to zero, which is
not allowed by the starting hypothesis. Then, the case k(0) with no zero entry is completely
covered.

Consider now the case when k(0) has a zero entry, and therefore the whole column is zero,
as established in [8]. Solutions K∞ = k(0) with one or more zero-columns can be obtained by
performing suitable simple transformations on the full solutions (2.1), and this then builds the
whole set of constant solutions. Here similar results can be established. Assuming k(0) has a

6
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column set to zero, the corresponding column in k(1) is forced to be zero as well. Therefore,
it is possible to conclude that solutions K with columns set to zero are possible, and they are
obtained by setting to zero one or several columns of solutions (2.14), since the specific form
of nonzero columns does not depend on the existence of other zero-columns. Finally, it can
be noted that the limit f −→ 0 in (2.14-IIb) provides again the solution 11 where the spectral
parameter does not appear. However, such a solution can be extended in a way to include a
spectral parameter dependence as follows

K(u; λ) = 11

(
1 +

f ′

u

)
, (2.15)

where f ′ is any function γ -periodic on each dynamical variable.
Attempts to find alternative solutions by truncating the expansion (2.4) to orders higher

than l = 1 proved to be unsuccessful. First of all, it is possible to show that to the order
l = 2 the ansatz (2.4) with k(0) and k(1) given by (2.14) is not a solution of the set of equations
coming from expression (2.3), unless k(2) = 0. Therefore, the only way out is to reconsider
the situation with both matrices k(1) and k(2) unknown. In fact, the relation (2.9) is the only
constraint which emerged unaltered by using the ansatz (2.4) for a generic order l. All other
relations stemming from (2.3) depend on the order of the ansatz (2.4) chosen. For the order
l = 2 this possibility has been analyzed in detail for the two solutions (2.1-Ia) and (2.1-IIb).
It is found that no non-trivial extensions matching the ansatz (2.4) with l = 2 are allowed.
This lack of success for the ansatz (2.4) with l = 2 suggests similar conclusions also hold for
an ansatz with a higher value of l.

3. The parametrization procedure for the elements of the SDRE

In this section, the principal formulas of the parametrization proposed in [7] and obtained
by solving equations (1.4) will be summarized. In what follows, the dependence of spectral
parameters and dynamical variables is implicit. When a quantity is non-dynamical it will be
clearly stated. It is also assumed, as usual, that matrices A,B,C,D are invertible.

First, equation (1.4-c) together with the fact that B is a space-1 zero weight matrix, allows
us to establish the existence of an invertible (n × n) matrix b such that

B12 ≡ C21 = b−1
2 b2

g(h1). (3.1)

This parametrization for the matrix B, by means of equation (1.4-b), allows us to prove the
existence of a quasi non-dynamical R-matrix such that

A12 = b−1
1 (b2

g)−1R12(b1)
gb2. (3.2)

The R-matrix appearing in (3.2) is said to be quasi non-dynamical since the occurrence of the
automorphism g in (1.4-b) leads to the following constraint:

R12 = R12
gg(h3). (3.3)

As a consequence

R12 = (
e− σ

γ
(log g1+log g2)

)
R0

12

(
e

σ
γ
(log g1+log g2)

)
, σ =

n∑
k=1

λk (3.4)

where the matrix R0, by means of equation (1.4-a), is proved to be a non-dynamical solution
of the following g-deformed YBE

R0
12R

0
13

ggR0
23 = R0

23
ggR0

13R
0
12

gg. (3.5)

7
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Finally, the matrix D is assumed to be decomposable as

D12 = q−1
1 (h2)q

−1
2 R̃12q1q2(h1), (3.6)

where R̃ is also of the form (3.4). It should be pointed out that all constant D-matrices of weak
Hecke type [12] associated with a Lie algebra g = gl(n) (n � 2) admit such a decomposition
[13] with g = 11. This result was recently extended to the affine (trigonometric) dynamical
R-matrices [14]. Such decompositions were already known in a number of cases (see for
example [11, 16]). Indeed, they characterize the matrix D as representation of a particular
(cocycle) Drinfeld’s twist [17] acting on a universal R-matrix, to yield a quasi-Hopf algebra
structure. Note that one can show immediately the following proposition [18].

Proposition 3.1. If R obeys the YBE (3.5), and D, which is constructed from R as (3.4) and
(3.6) for some q, is a zero-weight matrix, namely [hi ⊗ 11 + 11 ⊗hi,D12] = 0 for i = 1, . . . , n,
then D obeys the GNF equation. In other words, the zero-weight condition is sufficient in the
cocycle formulation (3.6).

Using parametrization (3.1)–(3.6) for structure matrices, one finds a consistent (sufficient)
parametrization for the scalar solutions K of the corresponding SDRE. In particular, one finds
as a solution

K = (bg)−1Qq, (3.7)

where Q solves

R12Q1q1Q2(h1)q
−1
1 = Q2q2Q1(h2)q

−1
2 R̃12. (3.8)

Since in all situations analyzed in the present paper K = 11is a solution of the SDRE, it is easily
shown that one can choose R = R̃ and q = bg in (3.6). Therefore, consider the following
parametrization for the matrix D

D12 = (
b1

g
)−1(h2)

(
b2

g
)−1R12b1

gb2
g(h1). (3.9)

If Q is searched for as quasi non-dynamical, namely

Q ≡ e− σ
γ

log g
Q0 e

σ
γ

log g
, (3.10)

with Q0 non-dynamical, then (3.8) simplifies to the following modified YB-like equation1

R0
12Q

0
1g

−1
2 Q0

2g2 = Q0
2g

−1
1 Q0

1g1R
0
12. (3.11)

This description emphasizes that a systematic scheme to build A,B,C,D structure matrices
arises. Indeed, starting from a given D-matrix, with a specific decomposition (3.6) yielding
an R̃-matrix (R̃ = R) with a quasi non-dynamical property (3.3) such that the associated
non-dynamical matrix R0 obeys a g-deformed YB equation (3.5), one has all the ingredients—
namely R, b and g—to consistently build the remaining A,B,C matrices. At this stage it is
worth recalling that non-scalar, operatorial solutions to the SDRE can also be obtained from
(3.11) and (3.7). In fact, it is remarkably simple to prove the transfer matrix formula for the
SDRE, such as obtained in [5], when it is expressed under a factorized form (see [7]). Indeed,
it is possible to show the general ‘dynamization of trace’ as follows:

Proposition 3.2. Suppose Q0 is a non-dynamical representation, for instance a monodromy
matrix, of (3.11) for a given R-matrix R0, and suppose b is a dynamical matrix in End (U)
such that D12 = b−1

1 (h2)b
−1
2 R0

12b1b2(h1) is zero-weight (we recall that the auxilliary space is
U = v ⊗ C[u], and we take g = 1 for simplicity).

[TrV Q0(u), TrV Q0(v)] = 0,

1 Note that a more general situation is represented by replacing g with g̃ in (3.10) and (3.11) provided [g, g̃] = 0.
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It is then possible to construct a dynamical transfer matrix τ 0 = (b−1Q0b e∂λ) such that

[TrV τ 0(u), TrV τ 0(v)] = 0.

Proof. It is simple, provided the following technical tricks are used:

(a) for any three operators M1,N2,O2 not containing e∂λ

Tr12(M1 e∂1N2O2 e∂2) = Tr12(N2(h1)M1 e∂1O2 e∂2),

(b) for any zero-weight C-number matrix D12 and any operator O12 not containing e∂λ

Tr12
(
D12O12D

−1
12 e(∂1+∂2)

) = Tr12(O12e(∂1+∂2)).2

Therefore, dynamical trace formula τ 0 seems to be the one-space counterpart of the
dynamical cocycle formula (3.6). �

3.1. Parametrization for the ACF rational constant matrices

The parametrization procedure will first be applied as an exercise to the structure matrices
(1.10)–(1.12). In this case, the auxiliary space U reduces to a finite-dimensional vector space
V and g = 11.

Using expression (1.11) for B, a solution b of (3.1) is

b∞
ij =

n∏
1=a �=j

λ
(i−1)
j

λja

i, j = 1, . . . , n, (3.12)

where the notation b∞ emphasizes the independence from a spectral parameter. Note that such
a solution is not unique. In fact, alternative solutions can be obtained by multiplying each row
i of the matrix (3.12) by a function fi γ -periodic on each dynamical variable. Furthermore, it
should be kept in mind that a matrix obtained by interchanging each pair of rows in (3.12) is
still a solution of (3.1).

Similarly, a non-dynamical R-matrix solving (3.2) reads

R∞ =
n∑

i,j=1

(eii ⊗ ejj ) + γ

n∑
i=1

i−1∑
k=1

i−k∑
j=1

(eii−k ⊗ ejj+k−1 − ejj+k−1 ⊗ eii−k), (3.13)

which is a Cremmer–Gervais R-matrix type [19]. Note that in this rational case there is a
difference of one in the root heights, compared to the trigonometric case [13]. Clearly, in this
case R = R0 ≡ R∞ and the matrix R∞ solves directly the ordinary YBE. The consequent
explicit parametrization of the matrix D∞ (3.9) in terms of the non-dynamical R∞-matrix
(3.13) and the ‘twist’ matrix b∞ (3.12) provides a concrete example of the theorem mentioned
previously and proved in [13].

Finally, concerning the constant solutions K of the SDRE, it can be verified that their
corresponding Q = Q∞ matrices satisfy equation (3.10). Particularly, for solutions (2.1-IIa)
and (2.1-IIb), these matrices are non-dynamical and their expressions are particularly simple.
For them, the Q∞ = Q0 matrices are

IIa Q∞ = (f enn + en−11 + en2)γ
(n−1),

IIb Q∞ = 11 +
n∑

i>j=1

(
i − 1
i − j

)
f (i−j)eij .

(3.14)

As expected, (3.14-IIa) is a set of rank-2 matrices, while (3.14-IIb) is an invertible triangular
set of matrices. By contrast, solutions (2.1-Ia) and (2.1-Ib) cannot be de-dynamized by (3.7).

2 Two cases of this ‘dynamical cyclicity’ appear in [5].

9



J. Phys. A: Math. Theor. 41 (2008) 194001 J Avan and C Zambon

3.2. Parametrization for the ACF rational non-constant matrices

In this situation, the structure matrices (1.7)–(1.9) are solutions of equation (1.4) with
g = exp

(−γ d
du

)
. The parametrization presented formally in section (3) is still available,

even if it appears to be a little more cumbersome. The ‘twist’ b matrix is chosen as

bij =
∏
a �=j

λ
(i−1)
j

λja

, bnj =
∏
a �=j

λ
(n−1)
j (σ − λj + u + γ )

λja(σ + u + f0)

j = 1, . . . , n, i = 1, . . . , n − 1, (3.15)

where f0 is a function of (σ +u). For simplicity, from now on, it will be taken to be a constant.
Note that the spectral parameter dependence is limited to one single row of the matrix. Even
this time this solution is not unique. Instead, the R-matrix reads

R =
(

1 +
γ

u − v

) n−1∑
i=1

eii ⊗ eii +

(
1 +

γ

u − v

)
(σ + v + f0)(σ + u − γ + f0)

(σ + u + f0)(σ + v − γ + f0)
enn ⊗ enn

+
n−1∑
ij=1

eii ⊗ ejj +
(σ + v + f0)

(σ + v − γ + f0)

n−1∑
i=1

eii ⊗ enn +
(σ + u − γ + f0)

(σ + u + f0)

n−1∑
i=1

enn ⊗ eii

+ γ
(σ + u + γ )

(σ + u + f0)

n−1∑
k=1

n−k∑
j=1

eii−k ⊗ ejj+k−1 − γ
(σ + v)

(σ + v − γ + f0)

n−1∑
k=1

n−k∑
j=1

ejj+k−1 ⊗ eii−k

+ γ

n−1∑
i=1

i−1∑
k=1

i−k∑
j=1

(eii−k ⊗ ejj+k−1 − ejj+k−1 ⊗ eii−k) +

(
γ

u − v

) n−1∑
i �=j=1

eij ⊗ eji

+

(
γ

u − v

)
(σ + u − γ + f0)

(σ + v − γ + f0)

n−1∑
i=1

ein ⊗ eni +

(
γ

u − v

)
(σ + v + f0)

(σ + u + f0)

n−1∑
i=1

eni ⊗ ein

− γ

(σ + u + f0)

n−1∑
i=1

n−1−i∑
k=1

enn−i ⊗ ekk+i +
γ

(σ + v − γ + f0)

n−1∑
i=1

n−1−i∑
k=1

ekk+i ⊗ enn−i .

(3.16)

Note that the results obtained in the previous section are reproduced when the spectral
parameters goes to infinity and consequently expressions (3.15) and (3.16) reduce to (3.12)
and (3.13), respectively. As an example, for the specific case n = 2 expression (3.16) becomes

R =
(

1 +
γ

u − v

)(
e11 ⊗ e11 +

(σ + v + f0)(σ + u − γ + f0)

(σ + v − γ + f0)(σ + u + f0)
e22 ⊗ e22

)

+
(σ + v + f0)

(σ + v − γ + f0)
e11 ⊗ e22 +

(σ + u − γ + f0)

(σ + u + f0)
e22 ⊗ e11

− γ
(σ + v)

(σ + v − γ + f0)
e11 ⊗ e21 + γ

(σ + u + γ )

(σ + u + f0)
e21 ⊗ e11

+

(
γ

u − v

)(
σ + u − γ + f0

σ + v − γ + f0
e12 ⊗ e21 +

σ + v + f0

σ + u + f0
e21 ⊗ e12

)
. (3.17)

Note that the choice f0 = γ enables to simplify a little this expression for the R-matrix.
As expected, and unlike the previous case, the R-matrix is still dynamical. However, in

agreement with (3.4), the dynamical dependence can indeed be eliminated and, setting f0 = γ ,

10
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the matrix R0 reads

R0 =
(

1 +
γ

u − v

) n−1∑
i=1

eii ⊗ eii +

(
1 +

γ

u − v

)
u(v + γ )

v(u + γ )
enn ⊗ enn

+
n−1∑
ij=1

eii ⊗ ejj +
(v + γ )

v

n−1∑
i=1

eii ⊗ enn +
u

(u + γ )

n−1∑
i=1

enn ⊗ eii

+ γ

n∑
i=1

i−1∑
k=1

i−k∑
j=1

(eii−k ⊗ ejj+k−1 − ejj+k−1 ⊗ eii−k) +

(
γ

u − v

) n−1∑
i �=j=1

eij ⊗ eji

+

(
γ

u − v

)
u

v

n−1∑
i=1

ein ⊗ eni +

(
γ

u − v

)
(v + γ )

(u + γ )

n−1∑
i=1

eni ⊗ ein

− γ

(u + γ )

n−1∑
i=1

n−1−i∑
k=1

enn−i ⊗ ekk+i +
γ

v

n−1∑
i=1

n−1−i∑
k=1

ekk+i ⊗ enn−i . (3.18)

It should be noted that this R-matrix does depend on the two spectral parameters u and v

independently and not only through their difference. This represents a novelty with respect to
the R-matrices which are solutions of the standard YBE, which usually depend on the spectral
parameters only through their difference. Using (3.15) and (3.16), a parametrization for the
D-matrix in line with (3.9) is realized. It represents an interesting example of decomposition
for non-constant D-matrices.

Again, the matrix Q (3.7) for the set of solutions (2.14) can be calculated. For instance,
the Q matrices for the invertible solutions (2.14-IIb), which do depend on the dynamical
variables, are given by the following triangular matrices

IIb Q =
(n−1)∑
i=1

eii +

(
1 − nf

u

)
enn +

(n−1)∑
i>j=1

(
i − 1
i − j

)
f (i−j)eij +

Mnj

u(u + σ − γ + f0)
enj ,

(3.19)

with

Mnj =
(n−1)∑
j=1

(
n − 1
n − j

)
f (n−j)u(u + σ) −

(
n

n − j + 1

)
f (n−j+1)u + (−)(n−j+1)nf

∑
β∈Lnj

∏
i∈β

λi,

where Lnj is a set of set of indexes depending on n and j : elements β of Lnj are all distinct
sets of (n− j + 1) different indexes k = 1, . . . , n. It can be easily seen that (3.19) collapses to
(3.14) in the limit u −→ ∞. This expression however does not allow for a factorization of the
dynamical shift in equation (3.8), which, therefore, cannot be simplified to the form (3.11).

4. A new set of structure matrices for the SDRE

The work by Antonov et al [11] provides an alternative parametrization for the matrix trigD

corresponding to the trigonometric case for which expression (1.9) is the rational limit3.
This fact suggests the possibility of using such a decomposition for finding new solutions
for the matrices A,B and C satisfying the consistency equations (1.4). More precisely, the
parametrization provided in [11] concerns the matrix trigDT and can be written as

S12c̃1c̃2(λ − γ h1) = c̃2c̃1(λ − γ h2)
trigDT

12, S12 = d−1
1 S̃12d2, (4.1)

3 Note that recently, all these parametrizations received a universal description in [14].
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with

trigD12 =
n∑

i �=j=1

[
sinh(s + γ )

sinh(s)
eii ⊗ eii

+
sinh(γ ) sinh(s + λij )

sinh(s) sinh(λij )
eij ⊗ eji +

sinh(λij − γ )

sinh(λij )
eii ⊗ ejj

]
(4.2)

S12 =
n∑

i �=j=1

[
sinh(s + γ )

sinh(s)
eii ⊗ eii

+
sinh(γ )

sinh(s)
es(2(i−j)−nsign(i−j))/neij ⊗ eji + eγ sign(i−j)eii ⊗ ejj

]

+ 2 sinh(γ )

⎡
⎣ n∑

1=i<i ′<j

e−2s(i ′−i)/neii ′ ⊗ ejj ′ −
n∑

i>i ′>j=1

e−2s(i ′−i)/neii ′ ⊗ ejj ′

⎤
⎦

i + j = i ′ + j ′, (4.3)

where s = (u − v) and the elements of the matrices c and d are

c̃jk = e2j (u+nλk)/n, djk = e2jγ /nδjk. (4.4)

The notation adopted in writing these formulas has been adapted to the present paper, and
therefore it differs slightly from the conventions used in [11]. The matrix S̃ from [11] is non-
dynamical and depends on the spectral parameters only through their difference s. According
to Antonov et al it satisfies the YBE, and consequently, the matrix S satisfies the YBE as well,
since the following property holds

[S, d ⊗ d] = 0. (4.5)

As it is, the expression (4.1) implies a parametrization for the trigD-matrix which does not
match the decomposition (3.6). However, it can be noted that both matrices S̃ and trigD are
invariant under the following transformation:

space 1 ←→ space 2, γ −→ −γ. (4.6)

This fact allows to rewrite expression (4.1) as follows

S12c̃2, c̃1(λ + γ h2) = c̃1c̃2(λ + γ h1)
trigDT

12, (4.7)

and consequently to obtain a parametrization for trigD in the form (3.6), namely

ST
12c1c2(λ + γ h1) = c2c1(λ + γ h2)

trigD12; cj = (
c̃−1
j

)T
j = 1, 2. (4.8)

It can be noted that unlike the case investigated previously in section (3.2), the automorphism
g is set equal to 11, in spite of a spectral parameter dependence. At this stage, putting in
effect the procedure sketched in section (3), it is possible to derive new matrices A,B and
C from the new set of data associated with trigD, namely ST = R, c = b and g = 11.
For instance, one can think to obtain immediately the rational limit of the matrices c and
ST , hence suitable formulations for matrices b and R (3.9), and consequently to find the
corresponding matrices B and A using expressions (3.1) and (3.2), respectively. Unfortunately,
the rational limit of matrix c, unlike the trigonometric case, leads to a matrix which is non-
invertible. An alternative possibility is first to find matrices B and A in the trigonometric
case, and subsequently to take their well-defined, non-singular rational limit consistently with
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equations (1.4). This last procedure turns out to be a better strategy. The new rational matrices
B and A, which will be indicated as B̂ and Â to differentiate them from the ACF matrices, are

B̂12 =
n∑

i=1

eii ⊗ pi,

pi =
n∏

1=k �=i

λik

(λik + γ )
eii +

n∑
1=j �=i

⎛
⎝ejj − γ

n∏
1=k �=i,j

λik

λjk(λji − γ )
eij

⎞
⎠ ,

(4.9)

Â12 =
n∑

i=1

(
1 +

γ

s

)
eii ⊗ eii +

n∑
i �=j=1

[(
1 − γ

λij

)
eii ⊗ ejj +

(
γ

s
+

γ

λij

)
eij ⊗ eji

]

+
n∑

i �=j=1

n∏
k �=i,j ;l �=j

γ λik

λjl

(eii ⊗ eij − eij ⊗ eii), s = (u − v). (4.10)

Since matrix B—called B̂ in the present case—is known, expression (3.1) can be used to find
a suitable invertible b matrix, which, in the present case, turns out to be given by the following
expression:

b̂ij =
∑

α∈Iij

∏
l∈α λl∏n

k �=j λjk

, (4.11)

where Iij is a set depending on i and j . Each element α of Iij is a collection of (n − i)

different indexes l �= j and the total number of elements of this set is given by the binomial
coefficient (n − 1)!/(n − i)!(i − 1)!. For instance, for n = 3 (4.11) becomes is

b̂ =

⎛
⎜⎜⎝

λ2λ3
λ12λ13

λ1λ3
λ21λ23

λ1λ2
λ31λ32

λ2+λ3
λ12λ13

λ1+λ3
λ21λ23

λ1+λ2
λ31λ32

1
λ12λ13

1
λ21λ23

1
λ31λ32

⎞
⎟⎟⎠ . (4.12)

Since matrices b̂ and Â are available, relation (3.2) can be used for computing the R-matrix
which satisfies the ordinary YBE and which is

R̂12 =
n∑

i=1

(
1 +

γ

s

)
eii ⊗ eii +

n∑
i �=j=1

(
eii ⊗ ejj +

γ

s
eij ⊗ eji

)

+ γ

n∑
i=1

i−1∑
k=1

i−k∑
j=1

(ei−ki ⊗ ej+k−1j − ej+k−1j ⊗ ei−ki). (4.13)

As expected, this matrix is non-dynamical. In addition it depends on the spectral parameters
only through their difference s. It can be noted that in the limit without spectral parameter,
expression (4.13) becomes the transposed of matrix (3.13). Once again the rational
Cremmer–Gervais-type matrix R̂ exhibits a difference of one in root heights, compared to the
trigonometric case [14]. This fact also explains why one cannot take the direct trigonometric
to rational limit in this procedure, since the underlying non-dynamical matrices are definitively
of distinct form.

None can be said about the parametrization of the solutions K of the SDRE with the
structure matrices presented in this section, since no K matrices are known yet. However, it
is interesting to see whether the parametrization procedure could provide some information
concerning these unknown solutions and act as a shortcut for finding them. Consider the

13



J. Phys. A: Math. Theor. 41 (2008) 194001 J Avan and C Zambon

situation with constant ACF structure matrices, for which the ‘twist’ is constructed from
(3.12), and consider also the parametrization for D (3.6) with the ‘twist’ built from (4.11).
Then, (3.8) becomes

R12Q1b̂1Q2(h1)b̂
−1
1 = Q2b̂2Q1(h2)b̂

−1
2 R̂12 Q = bKb̂−1. (4.14)

All elements of this expression are known since the K matrices refer to solutions of the SDRE
with ACF structure matrices. The same cannot be said concerning the following expression:

R̂12Q̂1b1Q̂2(h1)b
−1
1 = Q̂2b2Q̂1(h2)b

−1
2 R12, Q̂ = b̂K̂b−1, (4.15)

which is obtained from the SDRE using the new set of constant structure matrices, for which
the ‘twist’ is constructed from (4.11) and the parametrization for the D-matrix is obtained
using the ‘twist’ built from (3.12). In this case the matrices K̂ are unknown. However, (4.14)
can be manipulated in such a way to end up matching the formulation (4.15). Writing (4.14)
as

R̂12
[
Q1b̂1Q2(h1)b̂

−1
1

]−1 = [
Q2b̂2Q1(h2)b̂

−1
2

]−1
R12, (4.16)

it can be verified that (4.15) and (4.16) coincide provided

Q−1
2 (h1)

(
b̂−1

1 Q−1
1 b1

) = (
b̂−1

1 Q̂1b1
)
Q̂2(h1), (4.17)

and therefore (
b̂2K

−1
2 b−1

2

)
(h1)K

−1
1 = K̂1

(
b̂2K̂2b

−1
2

)
(h1), (4.18)

which represents a relation amongst the invertible constant solutions K and K̂ of the SDRE
with the two different sets of structure matrices. Full investigation of this equation will be left
to future studies; however, something can be said immediately concerning the simplest case,
namely n = 2. In fact, making use of the corresponding invertible set of solutions K (2.1-IIb),
it is possible to compute

Q =
(

0 1
−1 f + σ

)
. (4.19)

Though (4.19) is dynamical, its dependence from the dynamical variables appears through σ .
This fact allows to simplify (4.18) which now reads

K−1
1

(
b̂2K

−1
2 b−1

2

)
(σ + γ ) = K̂1

(
b̂2K̂2b

−1
2

)
(h1). (4.20)

As a consequence

K̂ = K−1 =
(

1 − f

λ12

f

λ12

− f

λ12
1 + f

λ12

)
, (4.21)

represents a set of invertible constant solutions of the SDRE for the new set of constant
matrices proposed in this section in the case n = 2. In the limit g −→ 0, the solution K̂ = 11
is obtained. More generally, when the mixed matrices Q (4.14) built from the 2 cocycles b
and b̂ are quasi non-dynamical, K̂ = K−1 always provides a solution to the alternative SDRE.
Unfortunately, in the present case, for n > 2 the dynamical dependence of matrices Q cannot
be formulated in terms of σ and therefore a more careful investigation of equation (4.18) is
needed for finding matrices K̂ .
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5. Conclusion

The purpose of this paper has been to extend previous work concerning the classification of
constant solutions of the SDRE to the non-constant case, and to provide explicit realizations
of the parametrization procedure proposed in [7] for all elements of the SDRE. During this
analysis, it has been shown how the existence of two distinct parametrizations for the D-matrix
leads to different sets of structure matrices for the SDRE, and consequently to new solutions
K for this equation. Because of the parametrization procedure, it was possible to reveal a
connection amongst invertible solutions K of the SDRE equation with the two different sets of
structure matrices available. In this context, an explicit example has been provided for the case
n = 2. Still, a full investigation of the SDRE equation is required for obtaining a classification
of the solutions K related to the new set of structure matrices. It will be interesting to see
the relationship amongst the integrable systems stemming from these solutions and the RS
models related to the ACF matrices, since all of them share the same D-matrix. In addition,
the existence, exemplified here, of several inequivalent sets of A,B,C,D matrices, which
share the same D-matrix with different de-twisting procedures (3.6), may explain why only
two sets out of four sets of constant solutions K∞ (2.1) can be extended to the non-constant
case (2.14). In fact, besides the ACF set of structure matrices A,B,C,D used in the present
paper, there may exist another set A′, B ′, C ′,D with the same limit u, v, (u − v) −→ ∞
and different non-constant solutions K ′, this time for the other two sets of K∞. The new set
Â, B̂, Ĉ,D found in section (4) does not realized this scheme since R̂∞, b̂∞ are different from
R∞, b∞.

Key objects of the parametrization procedure are ‘twists’ and R-matrices for which explicit
formulations are provided. Amongst the R-matrices found, it is worth pointing out matrices
(3.18), which satisfy a shifted YBE and which seem to appear here for the first time. Existence
of two decompositions of the matrix D does not contradict the uniqueness theorems in [13, 14]
since the decomposition (3.6) does not yield an R-matrix solving the Yang–Baxter equation
but its shifted extension.

Building explicit monodromy matrices and consequently N-body system or spin-chain
Hamiltonians is now feasible. Once again, it should be emphasized that in [7] it was shown
how the parametrization procedure proposed is able to extremely simplify these constructions
providing an elegant factorized form for the monodromy matrices. This is due to the possibility
of eliminating completely the quantum-space shifts of the dynamical variables, which are
present in the original formulas [6], and which make the construction of suitable monodromy
matrices particularly cumbersome.

Finally, it should be emphasized that the ACF matrices satisfying the SDRE are associated
with RS models in the bulk. In fact, the SDRE is not a reflection equation in the usual sense
and in [4] it was shown how any representation of the algebra (1.1) with the ACF structure
matrices turns into a representation of the fundamental relation SLL = LLS provided
suitable transformations are applied. This fact can be also seen as a rational and general
consequence of the parametrization procedure presented in section (3) and applied to the ACF
structure matrices. It would be interesting to study the RS models with a boundary and to find
a suitable algebra able to describe them.
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